Blog
Historia De Las Funciones
19.05.2011 20:41Mientras que el cálculo diferencial e integral surgió en el siglo XVII, el concepto de función vino a conocerse un siglo despúes, y el limite, entendido de una manera formal y rigurosa, solo a finales del siglo XIX, lo cual difiere de la forma como se presenta actualmente el cálculo, en donde primero se enseñan funciones, luego limites y finalmente derivadas o integrales. En la obra Introductio in Analysi Infinitorum, Leonhard Euler intenta por primera vez dar una definición formal del concepto de función al afirmar que: ``Una función de cantidad variable es una expresión analítica formada de cualquier manera por esa cantidad variable y por numeros o cantidades constantes''. como puede observarse, esta definición difiere de la que actualmenet se conoce, pues siete años despúes, en el prólogo de las Instituciones, calculo diferencial, afirmó:''Algunas cantidades en verdad dependen de otras, si al ser combinadas las ultimas las primeras también sufren cambio, y entonces las primeras se llaman funciones de las últimas. esta denominación es bastante natural y comprende cada metodo mediante el cual una cantidad puede ser determinada por otras. asi, si x denota una cantidad variable, entonces todas las cantidades que dependen de x en cualquier forma estan determinadas por x y se les llama funciones de x''.
En la historia de las matemáticas se le dan creditos al matemático suizo Leonhard Euler(1707-1783) por precisar el concepto de función, asi como por realizar un estudio sistemático de todas las funciones elementales, incluyendo sus derivadas e integrales; sin embargo, el concepto mismo de función nació con las primeras relaciones observadas entre dos variables, hecho que seguramente surgió desde los inicios de la matemática en la humanidad, con civilizaciones como la babilonica, la egipcia y la china.
Antes de Euler, el matemático y filosofo francés Rene Descartes(1596-1650) mostró en sus trabajos de geometria que tenía una idea muy clara de los conceptos de ``variable'' y ``función'', realizando una clasificación de las curvas algebraicas según sus grados, reconociendo que los puntos de intersección de dos curvas se obtienen resolviendo, en forma simultanea, las ecuaciones que las representan.
Funciones: Sabias que?
15.05.2011 22:05
La terminología asociada a las funciones se debe al matemático alemán Johann Peter Gustav Lejeune Dirichlet(1805-1859), quien escribió: “Una variable es un símbolo que representa un número dentro de un conjunto de ellos; si dos variables X e y están asociadas de tal forma que al asignar un valor a x entonces, por alguna regla o correspondencia, se asigna automáticamente un valor a y, se dice que es una función (Univoca) de x. La variable x, a la que se asignan libremente valores, se llama variable independiente, mientras que la variable y, cuyos valores dependen de x, se llama variable dependiente. Los valores permitidos de x constituyen el dominio de definición de la función y los valores de y constituyen su recorrido.”
Aplicaciones De Las FunciOnes.
Funciones

Tipos de Funciones
Función cuadrática
En matemáticas una función cuadrática o función de segundo grado es una función polinómica que se define mediante un polinomio de segundo grado como:
donde a, b y c son constantes y a es distinto de 0.
La representación gráfica en el plano XY haciendo:
esto es:
es una parábola vertical, orientada hacia arriba o hacia abajo según el signo de a.
Estudio de la función
Corte con el eje y
La función corta el eje y en el punto y = f(0), es decir, la parábola corta el eje y cuando x vale cero (0):
lo que resulta:
la función corta el eje y en el punto (0, c), siendo c el termino independiente de la función.
Corte con el eje x
La función corta al eje x cuando y vale 0, dada la función:
tendremos que:
las distintas soluciones de esta ecuación de segundo grado, son los casos de corte con el eje x, que se obtienen como es sabido por la expresión:
donde:
se le llama discriminante, Δ:
según el signo del discriminante podemos distinguir:
Discriminante positivo
- Δ > 0, la ecuación tiene dos soluciones, y por tanto la parábola cortara al eje x en dos puntos: x1 y x2.
Veamos por ejemplo la función:
que cortara el eje x cuando:
que tendrá por solución general:
en este caso:
que resulta:
Para esta ecuación el discriminante tiene valor positivo:
y por tanto tiene dos soluciones:
operando:
Los puntos: (-1,0), (5,0) son los de corte con el eje x, como se puede ver en la figura.
Función trigonométrica
Las funciones trigonométricas, en matemáticas, son relaciones angulares que se utilizan para relacionar los ángulos del triángulo con las longitudes de los lados del mismo según los principios de la Trigonometría.
Las funciones trigonométricas son de gran importancia en física, astronomía, cartografía, náutica, telecomunicaciones, la representación de fenómenos periódicos, y otras muchas aplicaciones.
Definiciones respecto de un triángulo rectángulo
Para definir las razones trigonométricas del ángulo: α, del vértice A, se parte de un triángulo rectángulo arbitrario que contiene a este ángulo. El nombre de los lados de este triángulo rectángulo que se usará en los sucesivo será:
- La hipotenusa (h) es el lado opuesto al ángulo recto, o lado de mayor longitud del triángulo rectángulo.
- El cateto opuesto (a) es el lado opuesto al ángulo que queremos determinar.
- El cateto adyacente (b) es el lado adyacente al ángulo del que queremos determinar.
Todos los triángulos considerados se encuentran en el Plano Euclidiano, por lo que la suma de sus ángulos internos es igual a π radianes (o 180°). En consecuencia, en cualquier triángulo rectángulo los ángulos no rectos se encuentran entre 0 y π/2 radianes. Las definiciones que se dan a continuación definen estrictamente las funciones trigonométricas para ángulos dentro de ese rango:
1) El seno de un ángulo es la relación entre la longitud del cateto opuesto y la longitud de la hipotenusa:
El valor de esta relación no depende del tamaño del triángulo rectángulo que elijamos, siempre que tenga el mismo ángulo α , en cuyo caso se trata de triángulos semejantes.
2) El coseno de un ángulo es la relación entre la longitud del cateto adyacente y la longitud de la hipotenusa:
3) La tangente de un ángulo es la relación entre la longitud del cateto opuesto y la del adyacente:
4) La cotangente de un ángulo es la relación entre la longitud del cateto adyacente y la del opuesto:
5) La secante de un ángulo es la relación entre la longitud de la hipotenusa y la longitud del cateto adyacente:
6) La cosecante de un ángulo es la relación entre la longitud de la hipotenusa y la longitud del cateto opuesto:
Función polinómica
En matemática, las funciones polinómicas son las funciones

- donde
es un polinomio en
,
, es decir, una suma finita de potencias de
multiplicados por coeficientes reales, de la forma:

Funciones polinómicas básicas
Algunas funciones polinómicas reciben un nombre especial según el grado del polinomio:
Grado | Nombre | Expresión |
---|---|---|
0 | función constante | y = a |
1 | función lineal | y = ax + b es un binomio del primer grado |
2 | función cuadrática | y = ax² + bx + c es un trinomio del segundo grado |
3 | función cúbica | y = ax³ + bx² + cx + d es un cuatrinomio de tercer grado |
Función lineal
En matemática, el término función lineal puede referirse a dos conceptos diferentes.
En el primero, correspondiente a la geometría y el álgebra elemental, una función lineal es una función polinómica de primer grado. Es decir, una función que se representa en el plano cartesianocomo una línea recta.
Esta función se puede escribir como
donde m y b son constantes reales y x es una variable real. La constante m es la pendiente de la recta, y b es el punto de corte de la recta con el eje y. Cuando cambiamos m modificamos la inclinación de la recta y cuando cambiamos b desplazamos la línea arriba o abajo.
En el segundo caso, en matemáticas más avanzadas, una función lineal es una función que es una aplicación lineal. Esto es, una aplicación entre dos espacios vectoriales que preserva la suma de vectores y la multiplicación por un escalar.
Una función lineal según la primera definición dada anteriormente representa una aplicación lineal si y sólo si b = 0. Así, algunos autores llaman función lineal a aquella de la forma f(x) = mx mientras que llaman función afín a la que tiene la forma f(x) = mx + b cuando b es distinto de cero..
Ejemplo
Una función lineal de una única variable dependiente x suele escribirse en la forma siguiente
Inicio | Imprimir | Mapa del sitio | RSS |
|